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MLBase.jl is a Julia package that provides useful tools for machine learning applications. It can be considered as a
Swiss knife for you when you are writing machine learning codes.

Dependencies:

• Reexport: to support name reexport

• StatsBase: all names in StatsBase are reexported

• ArrayViews: view is reexported

• Iterators: to support grid search

Contents:

Contents 1

https://github.com/simonster/Reexport.jl
https://github.com/JuliaStats/StatsBase.jl
https://github.com/lindahua/ArrayViews.jl
https://github.com/JuliaLang/Iterators.jl
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CHAPTER 1

Data Preprocessing Utilities

The package provide a variety of functions for data preprocessing.

1.1 Data Repetition

repeach(a, n)
Repeat each element in vector a for n times. Here n can be either a scalar or a vector with the same length as a.

using MLBase

repeach(1:3, 2) # --> [1, 1, 2, 2, 3, 3]
repeach(1:3, [3,2,1]) # --> [1, 1, 1, 2, 2, 3]

repeachcol(a, n)
Repeat each column in matrix a for n times. Here n can be either a scalar or a vector with length(n) ==
size(a,2).

repeachrow(a, n)
Repeat each row in matrix a for n times. Here n can be either a scalar or a vector with length(n) ==
size(a,1).

1.2 Label Processing

In machine learning, we often need to first attach each class with an integer label. This package provides a type
LabelMap that captures the association between discrete values (e.g a finite set of strings) and integer labels.

Together with LabelMap, the package also provides a function labelmap to construct the map from a sequence of
discrete values, and a function labelencode to map discrete values to integer labels.

julia> lm = labelmap(["a", "a", "b", "b", "c"])
LabelMap (with 3 labels):
[1] a
[2] b
[3] c

julia> labelencode(lm, "b")
2

julia> labelencode(lm, ["a", "c", "b"])
3-element Array{Int64,1}:

3
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1
3
2

Note that labelencode can be applied to either single value or an array.

The package also provides a function groupindices to group indices based on associated labels.

julia> groupindices(3, [1, 1, 1, 2, 2, 3, 2])
3-element Array{Array{Int64,1},1}:
[1,2,3]
[4,5,7]
[6]

# using lm as constructed above
julia> groupindices(lm, ["a", "a", "c", "b", "b"])
3-element Array{Array{Int64,1},1}:
[1,2]
[4,5]
[3]
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CHAPTER 2

Classification

A classification procedure, no matter how sophisticated it is, generally consists of two steps: (1) assign a score/distance
to each class, and (2) choose the class that yields the highest score/lowest distance.

This package provides a function classify and its friends to accomplish the second step, that is, to predict labels
based on scores.

classify(x[, ord ])
Classify based on scores given in x and the order of scores specified in ord.

Generally, ord can be any instance of type Ordering. However, it usually enough to use either Forward or
Reverse:

•ord = Forward: higher value indicates better match (e.g., similarity)

•ord = Reverse: lower value indicates better match (e.g., distances)

When ord is omitted, it is defaulted to Forward.

When x is a vector, it produces an integer label. When x is a matrix, it produces a vector of integers, each for a
column of x.

classify([0.2, 0.5, 0.3]) # --> 2
classify([0.2, 0.5, 0.3], Forward) # --> 2
classify([0.2, 0.5, 0.3], Reverse) # --> 1

classify([0.2 0.5 0.3; 0.7 0.6 0.2]’) # --> [2, 1]
classify([0.2 0.5 0.3; 0.7 0.6 0.2]’, Forward) # --> [2, 1]
classify([0.2 0.5 0.3; 0.7 0.6 0.2]’, Reverse) # --> [1, 3]

classify!(r, x[, ord])
Write predicted labels to r.

classify_withscore(x[, ord ])
Return a pair as (label, score), where score is the input score corresponding to the predicted label.

classify_withscores(x[, ord ])
This function applies to a matrix x comprised of multiple samples (each being a column). It returns a pair
(labels, scores).

classify_withscores!(r, s, x[, ord])
Write predicted labels to r and corresponding scores to s.

5



MLBase Documentation, Release 0.4.0

6 Chapter 2. Classification



CHAPTER 3

Performance Evaluation

This package provides tools to assess the performance of a machine learning algorithm.

3.1 Classification Performance

correctrate(gt, pred)
Compute correct rate of predictions given by pred w.r.t. the ground truths given in gt.

errorrate(gt, pred)
Compute error rate of predictions given by pred w.r.t. the ground truths given in gt.

confusmat(k, gt, pred)
Compute the confusion matrix of the predictions given by pred w.r.t. the ground truths given in gt. Here, k is
the number of classes.

It returns an integer matrix R of size (k, k), such that R(i, j) == countnz((gt .== i) & (pred
.== j)).

Examples:

julia> gt = [1, 1, 1, 2, 2, 2, 3, 3];

julia> pred = [1, 1, 2, 2, 2, 3, 3, 3];

julia> C = confusmat(3, gt, pred) # compute confusion matrix
3x3 Array{Int64,2}:
2 1 0
0 2 1
0 0 2

julia> C ./ sum(C, 2) # normalize per class
3x3 Array{Float64,2}:
0.666667 0.333333 0.0
0.0 0.666667 0.333333
0.0 0.0 1.0

julia> trace(C) / length(gt) # compute correct rate from confusion matrix
0.75

julia> correctrate(gt, pred)
0.75

7
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3.2 Hit rate (for retrieval tasks)

hitrate(gt, ranklist, k)
Compute the hitrate of rank k for a ranked list of predictions given by ranklist w.r.t. the ground truths given
in gt.

Particularly, if gt[i] is contained in ranklist[1:k, i], then the prediction for the i-th sample is said to
be hit within rank ‘‘k‘‘. The hitrate of rank k is the fraction of predictions that hit within rank k.

hitrates(gt, ranklist, ks)
Compute hit-rates of multiple ranks (as given by a vector ks). It returns a vector of hitrates r, where r[i]
corresponding to the rank ks[i].

Note that computing hit-rates for multiple ranks jointly is more efficient than computing them separately.

3.3 Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) is often used to measure the performance of a detector, thresholded classi-
fier, or a verification algorithm.

3.3.1 The ROC Type

This package uses an immutable type ROCNums defined below to capture the ROC of an experiment:

immutable ROCNums{T<:Real}
p::T # positive in ground-truth
n::T # negative in ground-truth
tp::T # correct positive prediction
tn::T # correct negative prediction
fp::T # (incorrect) positive prediction when ground-truth is negative
fn::T # (incorrect) negative prediction when ground-truth is positive

end

One can compute a variety of performance measurements from an instance of ROCNums (say r):

true_positive(r)
the number of true positives (r.tp)

true_negative(r)
the number of true negatives (r.tn)

false_positive(r)
the number of false positives (r.fp)

false_negative(r)
the number of false negatives (r.fn)

true_postive_rate(r)
the fraction of positive samples correctly predicted as positive, defined as r.tp / r.p

true_negative_rate(r)
the fraction of negative samples correctly predicted as negative, defined as r.tn / r.n

false_positive_rate(r)
the fraction of negative samples incorrectly predicted as positive, defined as r.fp / r.n

false_negative_rate(r)
the fraction of positive samples incorrectly predicted as negative, defined as r.fn / r.p

8 Chapter 3. Performance Evaluation
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recall(r)
Equivalent to true_positive_rate(r).

precision(r)
the fraction of positive predictions that are correct, defined as r.tp / (r.tp + r.fp).

f1score(r)
the harmonic mean of recall(r) and precision(r).

3.3.2 Computing ROC Curves

The package provides a function roc to compute an instance of ROCNums or a sequence of such instances from
predictions.

roc(gt, pred)
Compute an ROC instance based on ground-truths given in gt and predictions given in pred.

roc(gt, scores, thres[, ord ])
Compute an ROC instance or an ROC curve (a vector of ROC instances), based on given scores and a threshold
thres.

Prediction will be made as follows:

•When ord = Forward: predicts 1 when scores[i] >= thres otherwise 0.

•When ord = Reverse: predicts 1 when scores[i] <= thres otherwise 0.

When ord is omitted, it is defaulted to Forward.

Returns:

•When thres is a single number, it produces a single ROCNums instance;

•When thres is a vector, it produces a vector of ROCNums instances.

Note: Jointly evaluating an ROC curve for multiple thresholds is generally much faster than evaluating for them
individually.

roc(gt, (preds, scores), thres[, ord ])
Compute an ROC instance or an ROC curve (a vector of ROC instances) for multi-class classification, based on
given predictions, scores and a threshold thres.

Prediction is made as follows:

•When ord = Forward: predicts preds[i] when scores[i] >= thres otherwise 0.

•When ord = Reverse: predicts preds[i] when scores[i] <= thres otherwise 0.

When ord is omitted, it is defaulted to Forward.

Returns:

•When thres is a single number, it produces a single ROCNums instance.

•When thres is a vector, it produces an ROC curve (a vector of ROCNums instances).

Note: Jointly evaluating an ROC curve for multiple thresholds is generally much faster than evaluating for them
individually.

roc(gt, scores, n[, ord ])
Compute an ROC curve (a vector of ROC instances), with respect to n evenly spaced thresholds from
minimum(scores) and maximum(scores). (See above for details)

3.3. Receiver Operating Characteristics (ROC) 9
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roc(gt, (preds, scores), n[, ord ])
Compute an ROC curve (a vector of ROC instances) for multi-class classification, with respect to n evenly spaced
thresholds from minimum(scores) and maximum(scores). (See above for details)

roc(gt, scores, ord])
Equivalent to roc(gt, scores, 100, ord).

roc(gt, (preds, scores), ord])
Equivalent to roc(gt, (preds, scores), 100, ord).

roc(gt, scores)
Equivalent to roc(gt, scores, 100, Forward).

roc(gt, (preds, scores))
Equivalent to roc(gt, (preds, scores), 100, Forward).

10 Chapter 3. Performance Evaluation



CHAPTER 4

Cross Validation

This package implements several cross validation schemes: Kfold, LOOCV, and RandomSub. Each scheme is an
iterable object, of which each element is a vector of indices (indices of samples selected for training).

4.1 Cross Validation Schemes

Kfold(n, k)
k-fold cross validation over a set of n samples, which are randomly partitioned into k disjoint validation sets of
nearly the same sizes. This generates k training subsets of length about n*(1-1/k).

julia> collect(Kfold(10, 3))
3-element Array{Any,1}:
[1,3,4,6,7,8,10]
[2,5,7,8,9,10]
[1,2,3,4,5,6,9]

StratifiedKfold(strata, k)
Like Kfold, but indexes in each strata (defined by unique values of an iterator strata) are distributed approxi-
mately equally across the k folds. Each strata should have at least k members.

julia> collect(StratifiedKfold([:a, :a, :a, :b, :b, :c, :c, :a, :b, :c], 3))
3-element Array{Any,1}:
[1,2,4,6,8,9,10]
[3,4,5,7,8,10]
[1,2,3,5,6,7,9]

LOOCV(n)
Leave-one-out cross validation over a set of n samples.

julia> collect(LOOCV(4))
4-element Array{Any,1}:
[2,3,4]
[1,3,4]
[1,2,4]
[1,2,3]

RandomSub(n, sn, k)
Repetitively random subsampling. Particularly, this generates k subsets of length sn from a data set with n
samples.

julia> collect(RandomSub(10, 5, 3))
3-element Array{Any,1}:

11
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[1,2,5,8,9]
[2,5,7,8,10]
[1,3,5,6,7]

StratifiedRandomSum(strata, sn, k)
Like RandomSub, but indexes in each strata (defined by unique values of an iterator strata) are distributed
approximately equally across the k subsets. sn should be greater than the number of strata, so that each stratum
can be represented in each subset.

julia> collect(StratifiedRandomSub([:a, :a, :a, :b, :b, :c, :c, :a, :b, :c], 7, 5))
5-element Array{Any,1}:
[1,2,3,4,6,7,9]
[1,3,4,6,8,9,10]
[1,3,5,7,8,9,10]
[1,2,4,7,8,9,10]
[1,2,3,4,5,6,10]

4.2 Cross Validation Function

The package also provides a function cross_validate as below to run a cross validation procedure.

cross_validate(estfun, evalfun, n, gen)
Run a cross validation procedure.

Parameters

• estfun – The estimation function, which takes a vector of training indices as input and
returns a learned model, as:

model = estfun(train_inds)

• evalfun – The evaluation function, which takes a model and a vector of testing indices as
input and returns a score that indicates the goodness of the model, as

score = evalfun(model, test_inds)

• n – The total number of samples.

• gen – An iterable object that provides training indices, e.g., one of the cross validation
schemes listed above.

Returns a vector of scores obtained in the multiple runs.

Example:

# A simple example to demonstrate the use of cross validation
#
# Here, we consider a simple model: using a mean vector to represent
# a set of samples. The goodness of the model is assessed in terms
# of the RMSE (root-mean-square-error) evaluated on the testing set
#

using MLBase

# functions
compute_center(X::Matrix{Float64}) = vec(mean(X, 2))

12 Chapter 4. Cross Validation
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compute_rmse(c::Vector{Float64}, X::Matrix{Float64}) =
sqrt(mean(sum(abs2(X .- c),1)))

# data
const n = 200
const data = [2., 3.] .+ randn(2, n)

# cross validation
scores = cross_validate(

inds -> compute_center(data[:, inds]), # training function
(c, inds) -> compute_rmse(c, data[:, inds]), # evaluation function
n, # total number of samples
Kfold(n, 5)) # cross validation plan: 5-fold

# get the mean and std of the scores
(m, s) = mean_and_std(scores)

Please refer to examples/crossval.jl for the entire script.

4.2. Cross Validation Function 13
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CHAPTER 5

Model Tuning

Many machine learning algorithms and models come with design parameters that need to be set in advance. A widely
adopted pratice is to search the parameters (usually through brute-force loops) that yields the best performance over a
validation set. The package provides functions to facilitate this.

gridtune(estfun, evalfun, params...; ...)
Search the best setting of parameters over a Cartesian grid (i.e. all combinations of parameters).

Parameters

• estfun – The model estimation function that takes design parameters as input and produces
the model.

• evalfun – The function that evaluates the model, producing a score value.

• params – A series of parameters, given in the form of (param_name,
param_values).

Returns a 3-tuple, as (best_model, best_cfg, best_score). Here, best_cfg is a
tuple comprised of the parameters in the best setting (the one that yields the best score).

Keyword arguments:

•ord: It may take either of Forward or Reverse:

–ord=Forward: higher score value indicates better model (default)

–ord=Reverse: lower score value indicates better model.

•verbose: boolean, whether to show progress information. (default = false).

Note: For some learning algorithms, there may be some constraint of the parameters (e.g one parameter must be
smaller than another, etc). If a certain combination of parameters is not valid, the estfun may return nothing,
in which case, the function would ignore those particular settings.

Example:

using MLBase
using MultivariateStats

## prepare data

n_tr = 20 # number of training samples
n_te = 10 # number of testing samples
d = 5 # dimension of observations

theta = randn(d)
X_tr = randn(n_tr, d)

15
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y_tr = X_tr * theta + 0.1 * randn(n_tr)
X_te = randn(n_te, d)
y_te = X_te * theta + 0.1 * randn(n_te)

## tune the model

function estfun(regcoef, bias)
s = ridge(X_tr, y_tr, regcoef; bias=bias)
return bias ? (s[1:end-1], s[end]) : (s, 0.0)

end

evalfun(m) = msd(X_te * m[1] + m[2], y_te)

r = gridtune(estfun, evalfun,
("regcoef", [1.0e-3, 1.0e-2, 1.0e-1, 1.0]),
("bias", (true, false));
ord=Reverse, # smaller msd value indicates better model
verbose=true) # show progress information

best_model, best_cfg, best_score = r

## print results

a, b = best_model
println("Best model:")
println(" a = $(a’)"),
println(" b = $b")
println("Best config: regcoef = $(best_cfg[1]), bias = $(best_cfg[2])")
println("Best score: $(best_score)")

16 Chapter 5. Model Tuning
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